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† Instituto de F́ısica de la Universidad de Guanajuato, Apdo Postal E-143, Léon, Gto, Mexico
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Abstract. After a short outline of the factorization and Grassmann picture of the one-
dimensional (1D) Fokker–Planck (FP) equation, we consider a class of spatially inhomogeneous
solutions of the 2D FP equation with symmetric 2D (super)potentials. We show that the spatial
inhomogeneities of that class of solutions can be attributed to underlying Grassmannian pseudo-
degrees of freedom. Such an interpretation may also be applied to FP solutions in three and
more dimensions.

1. Introduction

Supersymmetric techniques are now widely used in a rich spectrum of physical problems,
covering such diverse fields as quantum gravity, quantum cosmology, particle physics,
quantum field theory and statistical mechanics. In the latter area, Grassmann variables were
first considered by Parisi and Sourlas [1] when they cast into supersymmetric form a simple
model of a scalar field coupled to a random external source. These intriguing variables
have been most often used for Langevin equations with complex actions (Langevin equation
formulation of quantum field theory [2]), but lately their application has been considerably
extended. As remarked by Sourlas [3] the anticommuting variables are introduced more for
combinatorial and other technical reasons and do not correspond to spin degrees of freedom
as one might naively think. On the other hand, in the context of Brownian diffusion in
a 1D bistable potential [4] the simple Witten supersymmetric procedure [5] has led to a
remarkably elegant way of computing the smallest non-vanishing eigenvalueλ1, which is
known to characterize the relaxation rate towards equilibrium of a stochastic system.

In this work, our aim is to show that a class of solutions of the 2D FP equation with
symmetric 2D superpotential may be interpreted in terms of an underlying Grassmannian
structure. The formalism is essentially that employed in quantum supercosmology [6] where,
however, as a rule, the cosmological potential is given and one works out the corresponding
superpotential. The FP situation is exactly the opposite. The formalism can be easily
generalized to more coordinates.

The organization of the paper is as follows. In the next section we outline Witten’s
scheme [5] for the 1D FP equation [4] including the superspace extension. In section 3 we
present a class of 2D FP solutions that can be traced to Grassmannian pseudo-degrees of
freedom and we end with some conclusions.
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2. Factorization of the 1D FP operator

Over a decade ago, Bernstein and Brown [4] provided a simple discussion of the
correspondence between the 1D FP equation with an arbitrary potential and Witten’s
supersymmetric quantum mechanics. The 1D FP equation with constant diffusion coefficient
(here normalized to unity) and potential drift is

1

γ

∂

∂t
P(x, t) = 1√

γ

∂

∂x

[
1√
γ

∂

∂x
+ √

γU ′(x)
]

P(x, t) (1)

whereU ′ = dU/dx is the drift force up to a sign, andγ = 1/kBT in the case of the
approach to thermal equilibrium [4], whilstγ = 1/νm (ν being the collision frequency and
m the molecular mass), in chemical reaction kinetics for a system with two stable states, e.g.
the trans-gaucheisomerization process [7]. For more algebraic symmetry, we introduced an
overall 1/γ factor in equation (1), which can always be cast into the Schrödinger equation
as follows. Any initial time-dependent distributionP(x, t) will relax at asymptotic times
to the static solution

Pst(x) = const× exp[−γU(x)] (2)

where const is a normalization constant. The evolution at intermediate times can be
discussed conveniently by means of the celebrated ansatz

P(x, t) = ϕ(x, t)exp(− 1
2γU(x)). (3)

P(x, t) → Pst when t → ∞. It turns the FP evolution ofP into a Schr̈odinger evolution
for ϕ in imaginary time(1/γ )(∂ϕ/∂t) = −HFPϕ, where the FP Hamiltonian is a Hermitian
and positive semidefinite operator. It is now easy to proceed with the factorization and the
whole Witten scheme. We writeHFP,1 = A†A with

A = 1√
γ

∂

∂x
− √

γU ′ and A† = 1√
γ

∂

∂x
+ √

γU ′.

Thus, the FP superpotential is proportional to the drift force, and the superpartner
Hamiltonian will beHFP,2 = AA†. The two FP Hamiltonian partners are defined as usual
as

−HFP,1,2 = 1

γ

d2

dx2
+ V1,2 (4)

with the potentialsV1,2 entering simple Riccati equationsV2,1 = −γU ′2 ± U ′′. As is
well known the great advantage of the supersymmetric procedure for the FP problem is
to replace bistable ‘bosonic’ potentials with much simpler single-well ‘fermionic’ ones [4].
The equilibrium distribution can always be written in terms of the FP superpotential as

Pst(x) = const× exp

(
− 2

∫
WFP(x) dx

)
. (5)

The time dependence ofϕ can be exponentiatedϕ(x, t) = ϕ(x) exp(−λt) [8] leading to the
stationary Schr̈odinger equation

1

γ

d2ϕ(x)

dx2
+ [λ+ V1,2(x)]ϕ(x) = 0. (6)

In the following we shall pay particular attention to the spatial functionϕ(x). We
would like to exploit some features of the formalism that may arise when considering it
as a superfield. We shall make use of some simple rules of the Grassmannian calculus as
given in Berezin [9].
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To introduce the superspace extension of the 1D FP equation, one should write the FP
supercharges as follows

Q = ψ

[
−i

1√
γ

∂

∂x
+ i

√
γ
∂U

∂x

]
(7a)

and

Q̄ = ψ̄

[
−i

1√
γ

∂

∂x
− i

√
γ
∂U

∂x

]
(7b)

whereψ = ∂/∂θ0 and ψ̄ = θ0 in the Grassmann representation. The superspace 1D FP
Hamiltonian operator will be

HFP = {Q, Q̄} =
[
P 2 +

(
∂U

∂x

)2

− ∂2U

∂x2

]
+ θ0 ∂

∂θ0

∂2U

∂x2
(8)

whereP = i(1/
√
γ )(∂/∂x) is the FP momentum operator.

Since we are interested in possible spatial inhomogeneities of ‘fermionic’-Grassmann
origin we shall expand theϕ-superfield in Grassmann variables as follows

ϕ(x, θ0) = A+(x)+ B0(x)θ
0. (9)

The conditionsQϕ = 0 andQ̄ϕ = 0 defining the ‘ground state’ giveA+ = a+ exp(−γU)
and B0 = b0 exp(γU). In other words,A+ is required to be ‘square-integrable’ in
superspace, and thereforeU(x) → ∞ as x → ±∞. Thus, one can see that theB0

component arising from the Grassmann variable can be discarded for physical reasons.
However, had we considered two or more Grassmann variables the conclusion would have
been different, as will be seen in the next section.

3. 2D FP solutions and Grassmann variables

We now show that there exist solutions of the 2D FP equation with spatial components that
can be naturally attributed to Grassmannian variables. Consider the following probability

P = [a2
+ + g2

0(x)+ g2
1(y)] exp(−2γU)+ [a2

−] exp(+2γU) (10)

whereg0 andg1 are arbitrary functions ofx andy, respectively. SupposeP is a solution
of a 2D FP equation. Then the term with the positive exponent is discarded as not physical.
The solution given by equation (10) can also be interpreted as a solution of the 2D FP
equation in superspace.

In the 2D case, the supercharges read

Q = ψµ

[
−Pµ + i

√
γ
∂U

∂qµ

]
(11a)

and

Q̄ = ψ̄ν

[
− Pν − i

√
γ
∂U

∂qν

]
. (11b)

The FP momentum operators are

Pµ = i
1√
γ

∂

∂qµ
.
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With {ψµ, ψ̄ν} = ηµν , where the metric isηµν = diag(1, 1), i.e. ψµ = ηµν∂/∂θν and
ψ̄ν = θν , one will find the superspace FP Hamiltonian to be written in the form

HFP = {Q, Q̄} = ηµν
[
PµPν + ∂U

∂qµ

∂U

∂qν
− ∂2U

∂qµ∂qν

]
+ ψ̄νψµ ∂2U

∂qµ∂qν
. (12)

The 2D Grassmann representation of theϕ field reads

ϕ = A+ + B0θ
0 + B1θ

1 + A−θ0θ1. (13)

The ground-state amplitudes are determined by the conditionsQϕ = 0 andQ̄ϕ = 0 with
theQ’s andϕ substituted from equations (11a, b) and equation (13), respectively. Using
the ansatz [6]

Bµ = ∂f

∂qµ
exp(−γU) µ = 0, 1

these conditions lead to the following equation forf :

�2f − 2γ∇2U∇2f = 0 (14)

where

�2 = ηµνPµPν (15)

and

∇2U∇2f = ηµν
∂U

∂qµ

∂f

∂qν
. (16)

In the case of separable potential functionsU(x, y) = U0(x)+ U1(y) and separablef
functionsf = f0(x)+ f1(y) one will obtain equation (14) in the form

∂2f0

∂x2
− 2γ

∂U0

∂x

∂f0

∂x
= −

(
∂2f1

∂y2
− 2γ

∂U1

∂y

∂f1

∂y

)
(17)

which is in almost separable form. Denoting thef -derivatives byF0 and F1, and the
U -derivatives byV0 andV1 one will get

∂F0

∂x
− 2γV0F0 = a1 (18a)

and
∂F1

∂y
− 2γV1F1 = −a1 (18b)

wherea1 is the separation constant. Fora1 = 0, one gets easilyF0 = const× exp(2γU0)

and F1 = const× exp(2γU1). The solutions forB0 and B1 turn out as follows:
B0 = b0 exp[γ (U0 − U1)] andB1 = b1 exp[−γ (U0 − U1)], whereb0 andb1 are constants.
Thus, the probability will be the square of the probability amplitude in superspace [9]

P = [a2
+ + b2

0 exp(4γU0)+ b2
1 exp(4γU1)] exp(−2γU)+ a2

− exp(2γU) (19)

which corresponds to equation (10) above.
When the separation constant is different from zero, one should write down the solutions

of equations (18a, b), which are as follows

F0 = a1 exp(2γU0)

∫
exp(−2γU0) dx + b0 exp(2γU0) (20a)

and

F1 = −a1 exp(2γU1)

∫
exp(−2γU1) dy + b1 exp(2γU1) (20b)

from which theB coefficients are immediately obtained by multiplying with exp(−γU).
Whena1 = 0 we recover the previous results.
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4. Conclusions

We have shown, on the basis of a simple separable example, that 2D FP spatially
inhomogeneous solutions can be related to Grassmannian pseudo-degrees of freedom.
Therefore one might think of them not only as a technical detail but also as having direct
physical effects. One can easily build higher-dimensional superfields corresponding to even
more complicated spatial inhomogeneities of either non-equilibrium thermodynamics or
chemical kinetics. In 3D, equation (13) is written as follows

ϕ = A+ + Bνθ
ν + 1

2εµνλC
λθµθν + A−θ0θ1θ2 (21)

whereµ, ν = 0, 1, 2, and

Bµ = ∂f

∂qµ
exp(−γU) Cλ = ∂f

∂qλ
exp(γU)

and the Euclidian metric isηµν = (1, 1, 1). Equation (14) is transformed into�3f ±
2γ∇3U∇3f = 0, where the operators have the same meaning as in equations (15) and (16),
except that the 3D metric is used. Equations (11) and (12) are preserved in form but the
attachedη-metric is 3D.
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